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It has been suggested that spatiotemporal dynamical systems cannot exhibit fractal basin boundaries,
as interactions among chaotic elements at different spatial sites may destroy fine scale phase-space struc-
tures. We present evidence of an extreme type of fractal basin boundary in spatiotemporal chaotic sys-
tems modeled by globally coupled, two-dimensional maps. The existence of fractal basin boundaries for
these systems indicates an extreme sensitive dependence of asymptotic attractors on both initial condi-

tions and parameters.

PACS number(s): 05.45.+b

Fractal basin boundaries are ubiquitous in low-
dimensional nonlinear dynamical systems that exhibit
multiple attractors [1,2]. For such systems, basins of at-
traction are separated by fractal sets called fractal basin
boundaries. It is impossible to predict, with certainty,
the asymptotic attractor corresponding to initial condi-
tions in the neighborhood of these boundaries. Systems
with multiple attractors may also exhibit “riddled basins”
[3], in which case at least one of the basins of attraction
has the property that any neighborhood about each point
within that basin contains points belonging to another
basin of attraction. Finally, there can exist an extreme
type of riddled basin, the so-called intermingled basin [3],
in which all basins of attraction are riddled.

Spatiotemporal systems are high-dimensional dynami-
cal systems. One way to study such systems is to model
them as ensembles of mutually interacting low-
dimensional systems arranged spatially. Examples include
coupled ordinary differential equations and coupled map
lattices [4]. Consider a situation where individual low-
dimensional elements are chaotic, and exhibit multiple at-
tractors and fractal basin boundaries. Due to chaotic in-
teraction, one might argue that for each individual ele-
ment, the influence of all other elements can be regarded
as random noise if coupling is not strong. Since noise can
wipe out of the fine-scale structure of the system on a
length scale determined by the coupling strength, one
might expect that arbitrarily fine fractal structures of
basin boundaries would be smeared out and, consequent-
ly, spatiotemporal chaotic systems may not exhibit the
type of fractal basin boundaries observed commonly in
low-dimensional systems [5].

In this paper, we present evidence of an extreme type

*Present address: Department of Physics and Astronomy,
Department of Mathematics, and Kansas Institute for Theoreti-
cal and Computational Science, The University of Kansas,
Lawrence, KS 66045.

1063-651X/94/50(5)/3470(4)/$06.00 50

of fractal basin boundary in spatiotemporal chaotic sys-
tems modeled by globally coupled, two-dimensional
maps. That is, there are regions in phase space such that
any neighborhood of an initial condition which asymp-
totes to an attractor A contains points which asymptote
to an attractor B. A scaling exponent (the so-called un-
certainty exponent a [1]) used to characterize such fractal
basin boundaries is estimated to be near zero, indicating
an extreme sensitive dependence of asymptotic attractors
on initial conditions, similar to that observed in low-
dimensional systems exhibiting riddled or intermingled
basins. We also demonstrate that the presence of these
fractal basin boundaries implies that for fixed initial con-
ditions, arbitrarily small parameter perturbations also
lead to completely different asymptotic attractors. This
results in the occurrence of “riddled parameter space” [6]
in spatiotemporal chaotic systems.

Our interest in systems of globally coupled maps is
motivated by the fact that they are highly simplified mod-
els for spatiotemporal dynamical systems described by
nonlinear partial differential equations or coupled ordi-
nary differential equations [5,7]. We primarily investi-
gate a system of N globally coupled Hénon maps because
the Hénon map [8] is the most extensively studied low-
dimensional chaotic systems. The system is given by

N 2
N —1 2 ;cn(j) +by,(i),

JyJj7Fi

Xy ()=a— |[(1—8)x,(i)+

(1)

Y, (D=x,0i), i=1,...,N,

where i denotes discrete spatial sites, n denotes discrete
time, @ and b are parameters of the Hénon map, and 6 is
a parameter specifying coupling strength between maps
at different sites. For simplicity, we assume that each
map couples to every other map with uniform coupling 5.
To detect possible attractors and their basins at given pa-
rameter values, maximum Lyapunov exponents (A) were
computed for many different initial conditions. In gen-
eral, A, >0 signifies the existence of a chaotic attractor,
while A, <0 indicates nonchaotic motion (quasiperiodic
or periodic). The phase-space dimension of Eq. (1) is 2N.
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To study such a high-dimensional system, we take an ap-
proach of choosing a two-dimensional plane among the
2N phase-space variables and systematically examine the
type of attractors resulting from many initial conditions
chosen on this plane. For convenience, we choose a plane
defined by the dynamical variables x (i) and y (i) at site 6.
Initial values of x (6) and y (6) are then varied systemati-
cally, while the values of x(j) and y(j)
(j=1,...,N,j6) are fixed.

In the following numerical experiments, we fix a =1.4
and b =0.3, a parameter combination which is believed
to yield a chaotic attractor for the single Hénon map [8].
As the coupling § is increased from zero, three regimes of
dynamic behavior exist [6]. For small § values, maps at
different sites evolve independently, and the dynamics are
usually chaotic. For large & values, strong coherence ex-
ists among maps. For moderate & values, interesting dy-
namics occur in which chaotic and nonchaotic attractors
coexist at given parameter values. We have fixed the
number of maps N to be 10. For this choice of N, the in-
termediate coupling regime is given by 0.14<§=<0.32
[6].

Figure 1 shows, for §=0.245, a histogram of A, values
resulting from a grid of 200X200 initial conditions
chosen in the two-dimensional region —2 <x(6)=<2 and
—2=yp(6)=2. There is a positive peak at A;=0.18, a
peak at A=0 and a negative peak at A;= —0.32, indicat-
ing the existence of a chaotic, a quasiperiodic, and a
periodic attractor, respectively [9]. The basin of the
chaotic attractor is shown in Fig. 2 (black dots). In Fig.
2, the blank regions indicate basins of the quasiperiodic
and periodic attractors. It can be seen from Fig. 2 that
basins of chaotic and nonchaotic attractors appear to be
extremely intermingled. For points that lead to the chaot-
ic attractor, there are points nearby that lead to either
the quasiperiodic or periodic attractor. This behavior
persists on much smaller scales, and the fractions of ini-
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FIG. 1. A histogram of largest Lyapunov exponents A, com-
puted from 40000 initial conditions whose (x(6),y(6)) values
are chosen uniformly from a grid of 200X200 in —2<x(6) <2
and —2=<y(6)=<2. Three types of attractors are seen: chaotic
(Ay=0.18), quasiperiodic (A;=0), and periodic (A;~ —0.32).
Parameter setting is @ =1.4, b =0.3, and §=0.245 in Eq. (1).
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FIG. 2. The basin (black dots) of the chaotic attractor with
A;=~0.18 in Fig. 1. Blank regions denote basins of the quasi-
periodic and periodic attractors.

tial conditions that lead to these attractors are invariant
when we examine smaller and smaller scales [6]. These
features thus strongly suggest that the basin boundaries
between the chaotic and nonchaotic attractors are fractal.

To quantify further the fractal basin boundaries, we
compute the uncertainty exponent [1]. The procedure is
as follows. First, we fix values of x (j) and y (), for j76,
and choose an arbitrary line segment in the [x(6),y (6)]
plane. Next, an initial condition with x(6) and y(6)
values on this line segment is chosen. We then choose
another initial condition on this line which is € distance
away from the first initial condition, where € is a small
perturbation, and compute A, for both initial conditions.
If one initial condition leads to chaos and the other gives
rise to nonchaotic motion, then the first initial condition
is said to be uncertain. For a given perturbation ¢, a frac-
tion f(€) of uncertain initial conditions is obtained by
randomly choosing many initial conditions on the line
segment until the number of uncertain initial conditions
reaches a definite large number (200 in our computation).
This process is repeated for many different values of e.
Typically, f(€) scales with € as f (€)~ €%, where the scal-
ing exponent « is the uncertainty exponent [1]. Figure 3

a = 0.024 + 0.005
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FIG. 3. Plot of the fraction of uncertain initial conditions
f(€) versus the uncertainty € on a base-10 logarithmic scale,
with the same parameter setting as in Fig. 1. The phase-space
uncertainty exponent is estimated to be a=0.02410.005.
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plots logof (€) versus log;o(€). The slope of the fitted
straight line, or an estimate of the uncertainty exponent,
is 0.024+0.005, a small value which is close to zero.

In numerical simulations to determine asymptotic at-
tractors, € can be viewed as the precision with which an
initial condition is specified. Then the scaling exponent a
determines the probability P(e) that the computed
asymptotic attractor is not a true one for this initial con-
dition [1]. [Note that f(€) is an approximation of P (¢).]
If a <1, reduction of € will result in only a small reduc-
tion of P(€). In particular, in the extreme case where
a=0, as shown in Fig. 3, improvement in the precision €
with which initial conditions are specified (even over
many orders of magnitude) may result in only an incre-
mental improvement in ability to predict the asymptotic
attractor correctly. To appreciate the implication of
a =0, assume that a takes its upper bound value of 0.029
in Fig. 3. Assume initial conditions can be specified to
within 107'6, then there is a probability of
P(€)~10%92(—16) = (.34 that the final asymptotic attrac-
tor computed is incorrect. Now, suppose computer pre-
cision is improved by 16 decades to 10732, Then the
probability of incorrectly computing the asymptotic at-
tractor is ~10%92%~32<0,12, a very small improvement
in uncertainty with respect to the magnitude of the im-
provement in computer precision [10]. This type of ex-
treme sensitive dependence of asymptotic attractor on in-
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FIG. 4. (a) A, versus 8 for 0.245<8 <0.248 at fixed initial
conditions; and (b) plot of the fraction of uncertain § values
f (€) versus the parameter perturbation €, where 8 is randomly
chosen in [0.14,0.32], on a base-10 logarithmic scale for a=1.4
and b =0.3. The parameter-space uncertainty exponent is es-
timated to be a=0.008=+0.006.
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itial conditions is also seen in low-dimensional systems
which exhibit riddled or intermingled basins [3].

The extreme type of final state sensitivity seen above
may also imply a same type of dependency on parame-
ters. Small perturbations in initial conditions at fixed pa-
rameter values may be conceptually regarded as pertur-
bations in parameter space with fixed initial conditions.
This can be seen by considering a dynamical system given
by x, +,=F(x,,p), where x and p are phase-space vari-
ables and parameters, respectively. In the presence of a
small perturbation in x, that results in an initial condi-
tion xg, where |xy—x,| —0, we have

F(x;)’po):F(xO’p0)+DFx‘x0,po'(x€)_xO)

EF(XO,po)+DFp|x0ypO'(p6_po)ZF(Xo,pE)) ) (2)

where DF,| xp, 2nd DFPIXo'Po are Jacobian matrices

with respect to x and p, respectively. The set of param-
eters po is related to x; by DFy[, . -(po—Ppo)

=DFx|x0,po-(x(',—xo). Therefore, at fixed initial condi-

tions, arbitrarily small parameter perturbations may yield
completely different asymptotic attractors. This is shown
in Fig. 4(a), which plots A, versus 8 for 0.245 <8 <0.248
at fixed initial conditions. Physically, this suggests that
small perturbations in parameters alter the basin struc-
tures of different types of attractors on arbitrarily fine
scales, although the overall phase-space structure
remains the same. In fact, Eq. (2) implies that the uncer-
tainty exponents computed in both phase space and pa-
rameter space should be close. This observation has been
used to detect possible fractal basin boundaries in experi-
mental settings [2]. Figure 4(b) shows log,,f(€) versus
log;o(€), where € is a perturbation in the parameter &
(randomly chosen from the interval [0.14,032]) for fixed
initial conditions. The uncertainty exponent is estimated
to be a=0.00810.006, indeed a small value which is very
close to zero.

Fractal basin boundaries similar to those shown above
may be common in globally coupled, two-dimensional
maps. We have tested Eq. (1) with N up to 80. The gen-
eral finding is that these systems all exhibit the same type
of phase-space and parameter-space structures {11]. The
reason that fractal basin boundaries occur in spatiotem-
poral systems may be attributed to the complicated in-
teraction among elements at different spatial sites as a
consequence of coupling. Consequently, the mean field
like coupling term in Eq. (1) behaves qualitatively
differently from a random noise term, in which case the
fractal phase-space structure would be destroyed. This
observation is consistent with the recent results on non-
statistical properties of globally coupled maps [7]. The
type of fractal basin boundaries described in this paper
render unpredictable asymptotic attractors for particular
initial conditions and/or parameters. This might provide
insight to the fact that spatiotemporal chaotic systems
are generally extremely unpredictable.
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FIG. 2. The basin (black dots) of the chaotic attractor with
A,;=0.18 in Fig. 1. Blank regions denote basins of the quasi-
periodic and periodic attractors.
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FIG. 4. (a) A, versus & for 0.245<8<0.248 at fixed initial
conditions; and (b) plot of the fraction of uncertain & values
S (€) versus the parameter perturbation €, where & is randomly
chosen in [0.14,0.32], on a base-10 logarithmic scale for a=1.4

and b =0.3. The parameter-space uncertainty exponent is es-
timated to be a=0.00810.006.



